Industrial Utility Efficiency

Vacuum Systems

An envelope manufacturer is upgrading their vacuum system to include a new VSD controlled pump. As part of the preparation for the installation, an energy baseline was developed, and leakage survey conducted. The auditor used a newly developed acoustic imaging camera as well as a basic ultrasonic leak detector gun. This article describes what was found and some of the challenges faced in detecting leaks in a busy plant.

Suttero Bazenheid Advances Meat Processing to Energy-Efficient Centralized Vacuum System

Energy for the entire Ernst Sutter AG company – and consequently the Suttero Bazenheid premises as well – is generated via hydropower. In addition, around 75% of the energy from refrigeration is also used to generate hot water. When creating vacuum for packaging, Suttero Bazenheid relies on a centralized vacuum system from Busch. This is significantly more energy-efficient in operation than decentralized vacuum supplies on individual packaging machines. As a result, Ernst Sutter AG has created a production plant that corresponds to the latest standards, both from a technical and ecological perspective. 

Rotary Screw Vacuum Pumps Benefit Meat Packaging Plants

Meat packaging plants have long used vacuum pumps as a way to remove air and reduce the amount of oxygen in their products’ plastic packaging. Vacuum packaging extends the meat’s shelf life while protecting its flavor and exposure to outside elements, such as freezer burn and bacteria.

Modern Woodcrafts Automates with Robotic Arms and Intelligent VSD Vacuum Pumps

The integrated process that leads to perfectly finished components begins in the plant’s new material store. “One way we’re staying at the leading edge in our market is by researching the latest innovations and choosing the best machine for each process,” Legere explains. “Our new material store, operational in June 2017, is one example. It combines a physical data base of sheet goods with a robotic arm that handles materials and presents them to a cutting machine for processing. After a few minutes, a finished part emerges. All of this occurs with zero human interaction.”

Vacuum System Fundamentals for "Compressed Air People"

If you want to understand vacuum systems, you have to get out of the ruts, and slog through the mud and bounce over the rocks a bit.  If you’re a “compressed air person”, think outside the box for a few pages with me.  I am going to borrow some terms from the “pump people” to explain how vacuum systems are similar, yet different from compressed air systems. There are several ruts to get out of.  Remembering what changes and what doesn’t, what is controlled, and how to design systems for optimal energy consumption.

Optimizing Five Liquid Ring Vacuum Pumps on a Paper Machine

Industrial process operating loads and optimal set points are not usually accurately known at the time of design, so often there is significant mismatch between equipment and the process it serves. To overcome this uncertainty, designers typically oversize equipment. Over time, process changes and equipment efficiencies decline, so equipment might be operating less efficiently than at start-up. Or, equipment can be undersized, thereby hampering the entire system and causing other inefficiencies to compensate. For instance, too much steam usage in the dryer section of a paper machine can occur because of inadequate vacuum at the wet end.

DEKKER Optimizes Vacuum Hold-Down in CNC Routers

Vacuum chucks and holding devices have been used in many industries for a variety of purposes, from lifting packages to holding items for machining. With the introduction of CNC routing machine-tools for mass production (of wood furniture, plastics and other non-magnetic materials), there was a need to clamp-down large work pieces on the flat router tables. Mechanical clamping was not an option as it caused damage to the work pieces and didn’t satisfy the need to quickly place items on the table and clamp instantly.

Cabinet Manufacturer’s CNC Routing Tables Switch to a Centralized Vacuum System

Multiple vacuum pumps can be running mostly “dead-headed” in the many production systems that don’t require constant flow.  Any system that evacuates a small volume and then holds a product down while it is being machined, or sucks a bag shut to seal will spend the majority of its time not moving much mass of air.  This type of operation is found everywhere in secondary wood processing, machining, food packaging, and many other industries.  Anywhere vacuum is used as a motive force or to evacuate a small volume repeatedly.  This article will apply to any of these types of systems- and not apply to constant-flow vacuum applications in the process industries.

Austrian Furniture Producer Centralizes Vacuum Supply

ADA Möbelfabrik, headquartered in Anger, Austria, is one of Europe’s largest manufacturers of furniture. Upholstered furniture, beds, mattresses and slatted frames are produced for the Austrian market and for many other European countries in two shifts, using modern manufacturing techniques. The vacuum supply required for securing items to the CNC machining centers is provided via a central vacuum plant produced by Busch. By opting for this vacuum system, ADA has integrated an extremely economical and reliable vacuum supply into the production process.

Vacuum Cooling Reduces Waste in Postharvest Cold Chain Systems

During the summer season, vegetables tend to deteriorate quickly once harvested from the field—or during postharvest stage of the cold chain. In traditional cold chain systems, vegetables are put into a chilled cooler for preservation, a process that requires approximately 12 hours for the product to achieve proper temperature. In some instances, as much as 25 percent of food product in the chilled cooler will decay before arriving at a proper storage area. Fortunately, there is a process for improving the effectiveness of the postharvest stage—vacuum cooling.

A Vacuum System Consolidation Audit

Vacuum systems are considered “black magic” by most plant engineers, even more so than compressed air. Terms like icfm, cfm, torr, and Nm3/hr get bandied around and confuse us all. What plant engineers know is what works. If they run vacuum pump X at vacuum level Y, everything works. That is a hard thing to change if there are inefficiencies in the system, even when an audit is recommending change. One of the biggest opportunities I run into for savings is the consolidation of multiple vacuum systems running at a lower absolute pressure (higher vacuum) than is really needed. Therefore, educating the customer is critical.