Industrial Utility Efficiency    

System Assessments

If you want to understand vacuum systems, you have to get out of the ruts, and slog through the mud and bounce over the rocks a bit.  If you’re a “compressed air person”, think outside the box for a few pages with me.  I am going to borrow some terms from the “pump people” to explain how vacuum systems are similar, yet different from compressed air systems. There are several ruts to get out of.  Remembering what changes and what doesn’t, what is controlled, and how to design systems for optimal energy consumption.

Blow-off Air

The snack food facility is running with two normally separated compressed air production systems: the main plant system and the nitrogen system.

Vacuum Controls

Vacuum chucks and holding devices have been used in many industries for a variety of purposes, from lifting packages to holding items for machining. With the introduction of CNC routing machine-tools for mass production (of wood furniture, plastics and other non-magnetic materials), there was a need to clamp-down large work pieces on the flat router tables. Mechanical clamping was not an option as it caused damage to the work pieces and didn’t satisfy the need to quickly place items on the table and clamp instantly.

Vacuum Generation

Air-driven Venturi vacuum generators have long been a viable option for fast-response, localized, vacuum-powered systems. Through the last decade, they were considered convenient and flexible solutions with quick response time. However, they were not regarded as energy efficient, probably due to their use of compressed air. Extensive product development with this equipment — particularly the crucial system accessories — often makes the selection of the most energy-efficient items difficult for many localized operations.

Pressure/Vacuum

Machine builders aiming to improve the energy efficiency of their machines tend to focus on using energy media other than pneumatics (typically electro-mechanical or hydraulic) since pneumatics, as traditionally applied, is viewed by some as inefficient due to factors like leakage and over-pressurization (i.e.: supplying a higher pressure in an actuator to accomplish a task which is endemic in practice). But they shouldn't, with its low cost of ownership, pneumatics when properly used remains a viable and many times preferable energy source for a given application.

Conveying

In open end pipe line suspension flow, or dilute phase pneumatic conveying, proper particle velocity is critical to continuing productivity and product quality. Until recently, measurement of actual particle velocity within the pipe has not been practical outside the laboratory. The plant operating personnel depend on a much less accurate metric - estimating the conveying air velocity in the pipe and relating that to particle velocity.

Blower Controls

The capacity and pressure requirements of blowers in a Water Resource Recovery Facility (WRRF) are determined by the aeration system. When systems are manually controlled blowers often operate at constant flow and pressure day in, day out. When the aeration system is automatically controlled to maintain a set dissolved oxygen (DO), however, the blower’s flow and system pressure vary constantly. Understanding these variations will help designers and suppliers optimize blower performance.
The integrated process that leads to perfectly finished components begins in the plant’s new material store. “One way we’re staying at the leading edge in our market is by researching the latest innovations and choosing the best machine for each process,” Legere explains. “Our new material store, operational in June 2017, is one example. It combines a physical data base of sheet goods with a robotic arm that handles materials and presents them to a cutting machine for processing. After a few minutes, a finished part emerges. All of this occurs with zero human interaction.”
The capacity and pressure requirements of blowers in a Water Resource Recovery Facility (WRRF) are determined by the aeration system. When systems are manually controlled blowers often operate at constant flow and pressure day in, day out. When the aeration system is automatically controlled to maintain a set dissolved oxygen (DO), however, the blower’s flow and system pressure vary constantly. Understanding these variations will help designers and suppliers optimize blower performance.
In open end pipe line suspension flow, or dilute phase pneumatic conveying, proper particle velocity is critical to continuing productivity and product quality. Until recently, measurement of actual particle velocity within the pipe has not been practical outside the laboratory. The plant operating personnel depend on a much less accurate metric - estimating the conveying air velocity in the pipe and relating that to particle velocity.
If you want to understand vacuum systems, you have to get out of the ruts, and slog through the mud and bounce over the rocks a bit.  If you’re a “compressed air person”, think outside the box for a few pages with me.  I am going to borrow some terms from the “pump people” to explain how vacuum systems are similar, yet different from compressed air systems. There are several ruts to get out of.  Remembering what changes and what doesn’t, what is controlled, and how to design systems for optimal energy consumption.
Industrial process operating loads and optimal set points are not usually accurately known at the time of design, so often there is significant mismatch between equipment and the process it serves. To overcome this uncertainty, designers typically oversize equipment. Over time, process changes and equipment efficiencies decline, so equipment might be operating less efficiently than at start-up. Or, equipment can be undersized, thereby hampering the entire system and causing other inefficiencies to compensate. For instance, too much steam usage in the dryer section of a paper machine can occur because of inadequate vacuum at the wet end.
The wastewater treatment plant in the Town of Hurlock, Maryland provides service to approximately 2,100 residences. However, the majority of the water treated comes from a nearby poultry processing plant, giving the plant influent a high organic content. That is why the Town of Hurlock replaced its two million-gallon-per-day (MGD) lagoon plant with a 1.65 MGD four-stage activated sludge facility ten years ago. After construction was completed, operating costs of the new plant were significantly higher than before. This meant the town had to get creative in order to keep costs down for their ratepayers.
Bird Island Wastewater Treatment Plant (WWTP) in Buffalo, N.Y., had an inefficient aeration control system that, ironically, had been installed in 1998 as an efficiency upgrade. The operating principle was that air flow to all 32 of the plant’s aeration basins, or zones, would be properly controlled by an average of several Dissolved Oxygen (DO) level measurements taken by DO probes in a few of the basins. However, changes in tank loadings and physical dynamics, along with differences in oxygen transfer rates between diffuser grids, prevented a uniform air flow in the aeration zones.
The 2016 Powder & Bulk Solids Conference & Exhibition was held May 3-5 at the Donald E. Stephens Convention Center at Rosemont, Illinois. Sponsored by the Process Equipment Manufacturers’ Association (PEMA®) and produced by UBM Canon, this event celebrated its’ 40th anniversary as the leading event for the powder industry. Whether for dilute or dense phase pneumatic conveying systems, vacuum, blower and compressed air technologies play an important role in this industry.
Vacuum chucks and holding devices have been used in many industries for a variety of purposes, from lifting packages to holding items for machining. With the introduction of CNC routing machine-tools for mass production (of wood furniture, plastics and other non-magnetic materials), there was a need to clamp-down large work pieces on the flat router tables. Mechanical clamping was not an option as it caused damage to the work pieces and didn’t satisfy the need to quickly place items on the table and clamp instantly.
ADA Möbelfabrik, headquartered in Anger, Austria, is one of Europe’s largest manufacturers of furniture. Upholstered furniture, beds, mattresses and slatted frames are produced for the Austrian market and for many other European countries in two shifts, using modern manufacturing techniques. The vacuum supply required for securing items to the CNC machining centers is provided via a central vacuum plant produced by Busch. By opting for this vacuum system, ADA has integrated an extremely economical and reliable vacuum supply into the production process.