Industrial Utility Efficiency

Wastewater

When a facility plans for a wastewater treatment plants, they typically design based on population and industry growth twenty to thirty years into the future. Regulatory requirements often dictate designing the activated sludge process equipment based on future-state influent flow and loading conditions, resulting in decades of constrained, inefficient, and suboptimal operation. 

Blower System Integration for Wastewater Aeration Applications

The overall wastewater treatment process is complex, and each step is integral to ensuring water is properly purified. Effluent ends up in the plants, containing substances that must be removed before the water can be properly cleaned and returned for use. The range of potential contaminants is almost endless and can include food, pulp, waste, or other substances. Afterwards, the water requires further scrubbing, with the aid of bacteria. It is in this part of the process that compressed air (ideally provided by energy-efficient rotary lobe blowers) plays a vital role.

APG-Neuros Retrofits San Bruno Aeration System with New Turbo Blowers

A facility audit examined the plant electrical energy consumption to find ideas to reduce plant energy use while meeting the process demand. Based on discussions with plant staff and a brief review of the process, it was decided to focus the effort on reducing the electrical energy required to provide aeration air to the secondary activated sludge process. The aeration air blowers were the largest consumers of electrical power in the plant and significantly less efficient than the newer blowers that have been introduced to the market place in the recent years.

The CAGI Low-Pressure Blower Standards BL 5389 and BL 300

Industrial standards provide a common means of understanding and communicating performance. This article examines the rationale and applications of the Compressed Air & Gas Institute’s standards for determining the energy efficiency of low-pressure blower packages.

How To Select The Most Effective Blower Technology for Wastewater Applications

This guide explains three blower technologies and,using examples from actual wastewater plants, describes the most effective technology for particular applications and why. Of course there is no substitute for a consultation specific to your application; however, the guide can help raise the right questions and ensure a productive vendor and technology evaluation process.

High Speed Bearing Technologies for Wastewater Treatment Applications

High speed bearing technology is applicable for aeration blowers operating at much higher speeds than the typical 60Hz, 3600RPM for cast multistage units. High Speed Turbo (HST) units are usually single stage (though some utilize multiple cores) and rotate from 15,000 to 50,000RPM. At such high speeds, standard roller bearings cannot offer the industry standard L10 bearing life. Two types of bearing technologies have come to dominate the wastewater treatment market for these types of machines: airfoil and magnetically levitated. Often the two technologies are compared as equals, however, in many significant ways they are not.

Kaeser Rotary Screw Blowers for Wastewater Aeration

Blower & Vacuum Best Practices interviewed Frank Mueller (President) and Stephen Horne (Blower Product Manager) from Kaeser Compressors.

Kaeser Compressors continues to grow both in the U.S. and internationally. We currently employ approximately 4800 people globally. In order to support the demand and maintain our superior quality and quality service levels, we continue to invest in people, facilities and technology.

Remote Diagnostics for Water Filtration Systems

Productivity is more reliable when equipment can be monitored to detect incipient failures and take corrective action before the plant goes down. But many devices, such as analog control valves, pneumatic valve terminals and field sensors, often do not offer diagnostic feedback, or it is not being used. This white paper describes how this problem is being addressed, and includes an example of pneumatic valve terminals that can monitor, among other things, open load or coil currents at the specific valve and pressure inside the valve terminal.

DO Control System and Turbo Blowers Optimize Energy Use at a WWTF

Every municipality and utility is facing the reality of rising energy costs. In 2010, the Town of Billerica, MA, which is located 22 miles northwest of Boston with a population of just under 40,000 residents, engaged Process Energy Services and Woodard & Curran to conduct an energy evaluation of the Town’s Wastewater Treatment Facility (WWTF) and pump station systems sponsored by National Grid. The objective of the evaluation was to provide an overview of each facility system to determine how electrical energy and natural gas were being used at the facility and to identify and develop potential costsaving projects.

Screw Blowers and Membrane Bioreactor Treat Wastewater at a Bottling Plant

The right ingredients and processes are essential for manufacturing flavorful beverages that contribute to the company’s bottom line. But what happens to all those other “ingredients” that aren’t part of the recipe? Cleaning up those unwanted ingredients from bottling plant wastewater can consume large amounts energy, time and money—and become a distraction from the company’s primary goal of manufacturing beverages.