Industrial Utility Efficiency

Wastewater

Julie Gass, P.E., is a Lead Mechanical Process Engineer at Black & Veatch and an industry veteran with extensive experience in mechanical equipment in wastewater treatment plants. She also served on the American Society of Mechanical Engineers (ASME) Committee responsible for ASME PTC 13, Wire-to-Air Performance Test Code for Blower Systems, which is the performance test code published in October 2019 for all blower technologies. Blower & Vacuum Best Practices Magazine interviewed Gass to gain her views on aeration blowers, PTC 13, and the firm’s rigorous specification process to ensure treatment plants get the blower best suited for their application.

Madison Utilities Wastewater Treatment Plant Blower Upgrade Saves Energy

One need look no further than the treatment plant’s digester project upgrade to see the value of the plant’s forward-thinking approach at work. The upgrade involved the replacement of five Positive Displacement (PD) blowers with four, high-speed Inovair integrally geared blowers for aerating the digesters. With fewer – and smaller – blowers the plant saves tens of thousands of dollars in energy costs per year. The blowers also offer flexibility to cost-effectively adapt to the need for increased water treatment in the future. 

KC Water Relies on Analytics to Optimize Wastewater Systems for Sustainability

KC Water encompasses six wastewater plants and 43 flood and sanitary stations. There are 15 flood stations along the Missouri River that keep Kansas City dry. Then we have 1,350 acres of land for biosolids application. Industrial pre-treatment is the responsibility of the Regulatory Compliance Division. We all work closely together.

Black & Veatch: Ensuring Aeration Blowers Meet the Needs of Wastewater Treatment Plants

Julie Gass, P.E., is a Lead Mechanical Process Engineer at Black & Veatch and an industry veteran with extensive experience in mechanical equipment in wastewater treatment plants. She also served on the American Society of Mechanical Engineers (ASME) Committee responsible for ASME PTC 13, Wire-to-Air Performance Test Code for Blower Systems, which is the performance test code published in October 2019 for all blower technologies. Blower & Vacuum Best Practices Magazine interviewed Gass to gain her views on aeration blowers, PTC 13, and the firm’s rigorous specification process to ensure treatment plants get the blower best suited for their application.

How to Calculate Aeration Blower Energy Costs

Aeration blower upgrades may be part of a total plant upgrade and minimizing energy consumption is a critical consideration. Blower replacements are also a common Energy Conservation Measure (ECM) in cost-reduction programs.

Helping Wisconsin Wastewater Treatment Facilities Save Energy

Leidos Engineering, LLC., is responsible for implementing the Wisconsin Focus on Energy® Large Energy Users (LEU) Program in Wisconsin. Blower & Vacuum Best Practices interviewed Leidos Engineering’s Joseph Cantwell, P.E., Senior Energy Management Professional, Focus on Energy – LEU Program, to learn how the firm works with Focus on Energy to help wastewater treatment facilities in the dairy state reduce energy consumption and save costs.

Progress Continues on ASME PTC 13, Blowers

In 2010, the American Society of Mechanical Engineers (ASME) established the PTC 13 Committee to establish a power test code for all blower technologies. Blower & Vacuum Best Practices Magazine interviewed Committee Chair Jacque Shultz, HRO-Turbo Product Technical Leader, Howden North America, Inc., for an update on the new code.

The Basics of Aeration Control Valves - Part 1

Sizing, selection, and adjusting control valves often causes confusion for process and control system designers. Improper valve application can cause operating problems for plant staff and waste blower power. Basing the airflow control system design on fundamental principles will improve valve and control system performance.

Sni-A-Bar Wastewater Plant Saves $42,000 Annually in Energy with New Aeration Blowers

After auditing and field-testing, the Sni-A-Bar Municipal Wastewater Plant in Blue Springs, Missouri, partnered with Inovair to replace 4 fixed-speed rotary lobe blowers on its aeration system with 4 Variable Frequency Drive (VFD), integrally geared centrifugal blowers. The new blowers, along with improvements in blower controls, reduces annual energy use by 442,664 kWh and peak electrical demand by 48.76 kW, which translates to an annual energy reduction of 37 percent and anticipated savings of $42,000 per year. Additionally, a rebate of $45,799 from the local utility resulted in a payback of less than six years.

Pay Close Attention to Turndown to Achieve Blower System Optimization

Turndown designates the operating range of an aeration blower or a blower system – and it can often be the most important factor in determining the ability of a system to match process demand. It is also critical to the system’s energy optimization. Unfortunately, in designing blower systems and controls turndown is not always given the attention that its importance merits. Here’s a look at the critical nature of turndown in wastewater treatment plants and recommendations for ensuring adequate turndown when utilizing Positive Displacement (PD) and centrifugal blowers.

Three Blower Technologies Help Pennsylvania Wastewater Plant Meet Wide Range of Operating Conditions

Originally built in 1958, the CMA wastewater treatment plant serves 14,000 residents, as well as businesses, in Clearfield Borough and surrounding portions of Lawrence Township, Clearfield County, PA. From the start, the plant consistently met water quality and effluent parameters as specified in its National Pollutant Discharge Elimination System (NPDES) permit throughout. However, new mandates in 2010 and the need for ongoing improvements drove the need for plant upgrades.