Industrial Utility Efficiency    

Technology

Most-Open-Valve (MOV) can be a cost-effective way to optimize aeration energy. It can also be a confusing and troublesome addition to a process automation project. In my experience MOV is the least understood aspect of aeration control. This article will shed light on MOV, the process and energy impacts and why it’s worth the trouble.

Aeration Blowers

Blower manufacturers are the source for the most accurate information on aeration blower power consumption. This includes the impact of various control technologies on the many types of blowers used for aeration. However, system designers often need to analyze several alternatives, making reliance on input from suppliers inconvenient. An understanding of the principles of operation will also enhance the designer’s ability to assess the data received from various sources.

Industrial Blowers

The 2016 Powder & Bulk Solids Conference & Exhibition was held May 3-5 at the Donald E. Stephens Convention Center at Rosemont, Illinois. Sponsored by the Process Equipment Manufacturers’ Association (PEMA®) and produced by UBM Canon, this event celebrated its’ 40th anniversary as the leading event for the powder industry. Whether for dilute or dense phase pneumatic conveying systems, vacuum, blower and compressed air technologies play an important role in this industry.

Rough Vac

If you want to understand vacuum systems, you have to get out of the ruts, and slog through the mud and bounce over the rocks a bit.  If you’re a “compressed air person”, think outside the box for a few pages with me.  I am going to borrow some terms from the “pump people” to explain how vacuum systems are similar, yet different from compressed air systems. There are several ruts to get out of.  Remembering what changes and what doesn’t, what is controlled, and how to design systems for optimal energy consumption.

Medium/High Vac

The European XFEL is a new international research facility, where 12 European countries participate. The non-profit society European XFEL GmbH is responsible for the construction and operation of the X-ray laser. DESY (Deutsches Elektronen-Synchrotron), one of the leading centers for the investigation of the structure of matter worldwide and a long-term partner of Pfeiffer Vacuum, is the main share- holder.

Measurement

Every municipality and utility is facing the reality of rising energy costs. In 2010, the Town of Billerica, MA, which is located 22 miles northwest of Boston with a population of just under 40,000 residents, engaged Process Energy Services and Woodard & Curran to conduct an energy evaluation of the Town’s Wastewater Treatment Facility (WWTF) and pump station systems sponsored by National Grid. The objective of the evaluation was to provide an overview of each facility system to determine how electrical energy and natural gas were being used at the facility and to identify and develop potential costsaving projects.

Purification

Contamination such as humidity, oxygen or microbiological ingress can impact drug stability throughout the product life cycle. To prevent the risks of stability failure of highly moisture sensitive drugs (e.g. dry powder for inhalation), or the risk of biological ingress of parenteral drugs, highly sensitive integrity tests are required. Most test methods are very challenging in regards to time, effort, complexity or the limitation of sensitivity and detection range.

Vac Generation

Using suction cups and air-driven vacuum pumps is a preferable gripping and handling method of corrugated cardboard materials and boxes in carton-machines like case/carton erectors and rotary cartoners. Robot based applications, like palletizing and de-palletizing, are other examples where the best practice technology for gripping and handling is by suction cups and air-driven vacuum pumps.  
The market health is moderate. 2017 was a better year than 2016, which saw a slight decline. With that said, 2017 will be a good year for us. One major trend impacting the industrial vacuum market is industry consolidation. Busch employees and clients benefit against this dynamic market environment, from the strength and stability of our family-owned business- a business with over 3,000 employees in over 60 subsidiaries worldwide. The average tenure, for a subsidiary General Manager, is twelve years. This allows us to stay focused on managing for the long term benefit of customers and employees.
The 2017 WEFTEC Technical Exhibition and Conference was held October 2-4 at  McCormick Place in Chicago. The 2017 event made the list of the top five largest and best-attended events in the conference’s 90-year history. A total of 22,860 registrants and 1,011 exhibitors using a net of 305,600 ft2 of space attended WEFTEC. The event featured technical sessions, workshops, facility tours, and numerous other educational and networking events. WEFTEC is an enormous show. Both Blower & Vacuum Best Practices and Compressed Air Best Practices® Magazines were pleased to be in the literature bins at the 2017 WEFTEC!
The European XFEL is a new international research facility, where 12 European countries participate. The non-profit society European XFEL GmbH is responsible for the construction and operation of the X-ray laser. DESY (Deutsches Elektronen-Synchrotron), one of the leading centers for the investigation of the structure of matter worldwide and a long-term partner of Pfeiffer Vacuum, is the main share- holder.
Meat packaging plants have long used vacuum pumps as a way to remove air and reduce the amount of oxygen in their products’ plastic packaging. Vacuum packaging extends the meat’s shelf life while protecting its flavor and exposure to outside elements, such as freezer burn and bacteria.
At Scholle IPN, Valley Packline’s engineering experience and JetAir’s drying expertise came together to deliver an automated, energy efficient solution. Ultimately, the new system eliminated 120 man-hours each week dedicated entirely to erecting and washing. The new system can be manned by just one employee as it pulls bins directly off delivery trucks, re-erects, washes, and dries them, and feeds them into the facility for refilling. Throughput at Scholle was improved by the system, while energy costs were kept to a minimum.
Blower manufacturers are the source for the most accurate information on aeration blower power consumption. This includes the impact of various control technologies on the many types of blowers used for aeration. However, system designers often need to analyze several alternatives, making reliance on input from suppliers inconvenient. An understanding of the principles of operation will also enhance the designer’s ability to assess the data received from various sources.
This article reviews two common pneumatic conveying system types and the importance for each operating plant to know their design and operating parameters particularly conveying air flow velocity and particle velocity profile.
The integrated process that leads to perfectly finished components begins in the plant’s new material store. “One way we’re staying at the leading edge in our market is by researching the latest innovations and choosing the best machine for each process,” Legere explains. “Our new material store, operational in June 2017, is one example. It combines a physical data base of sheet goods with a robotic arm that handles materials and presents them to a cutting machine for processing. After a few minutes, a finished part emerges. All of this occurs with zero human interaction.”
The capacity and pressure requirements of blowers in a Water Resource Recovery Facility (WRRF) are determined by the aeration system. When systems are manually controlled blowers often operate at constant flow and pressure day in, day out. When the aeration system is automatically controlled to maintain a set dissolved oxygen (DO), however, the blower’s flow and system pressure vary constantly. Understanding these variations will help designers and suppliers optimize blower performance.
In open end pipe line suspension flow, or dilute phase pneumatic conveying, proper particle velocity is critical to continuing productivity and product quality. Until recently, measurement of actual particle velocity within the pipe has not been practical outside the laboratory. The plant operating personnel depend on a much less accurate metric - estimating the conveying air velocity in the pipe and relating that to particle velocity.